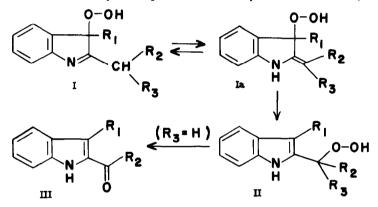
Tetrahedron Letters No. 29, pp. 2009-2012, 1963. Pergamon Press Ltd. Printed in Great Britain.


ON THE AUTOXIDATION OF INDOLES

H. H. Wasserman and M. B. Floyd

Department of Chemistry, Yale University New Haven, Connecticut (Received 15 October 1963)

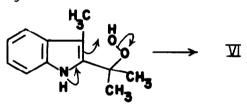
The reaction of 2, 3-disubstituted indoles with oxygen leads

generally to indolenine-3-hydroperoxides I, 1 and it has recently been shown that these may decompose to form 2-acylindole derivatives. III.

Mechanistic explanations for this unusual transformation have been advanced by Leete, 2 and more recently by Taylor³ who has suggested the allylic rearrangement of Ia to II as a key step in the process. In this communication, we report the results of the autoxidation of 2-isopropyl-3-methylindole, and suggest an alternative explanation for the formation of the observed products.

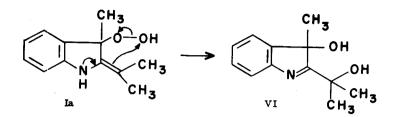
2009

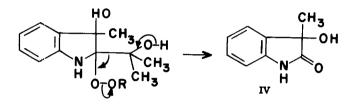
When oxygen was bubbled into a hexane solution of 2-isopropyl-3-methylindole in the presence of azobisisobutyronitrile, three products were isolated. The indolenine hydroperoxide I, $R_1 = R_2 = R_3 = CH_3$, formed after two days, was the first product removed from solution. It is an unstable crystalline compound, m. p. 101. 5-102. 5°. (Calcd. for $C_{12}H_{15}NO_2$: C, 70. 21; H, 7. 37; N, 6. 82. Found: C, 70. 05; H, 7. 61; N, 6. 67). $\lambda \stackrel{95\%EtOH}{max}$ 260 mµ (log ϵ 3. 58), 220 mµ (log ϵ 4. 33). This spectrum corresponds to the well-known absorption of the indolenine chromophore. Longer exposure to oxygen yielded the oxindole IV, *m. p. 161. 5-162. 5°. (Calcd. for $C_9H_9NO_2$: C, 66. 24; H, 5. 56; N, 8. 59. Found: C, 66. 44; H, 5. 57; N, 8. 81). $\lambda \stackrel{95\%EtOH}{max}$ 290 (log ϵ 2. 90), 252 mµ (log ϵ 3. 72); $\lambda \stackrel{KBr}{max}$ 3375, 1710, 1620, 1470, and 1442 cm⁻¹. The NMR spectrum shows a singlet (3 protons) at 8. 5T, a singlet (1 proton) at 5. 15T, and a 4 proton multiplet at 2. 5-3 T. Hydroperoxide I, $R_1 = R_2 = R_3 = CH_3$, is converted to IV in very low yield by heating in ethyl acetate.

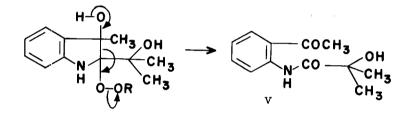

A third product isolated from the reaction mixture was the hydroxyacylaminoacetophenone derivative V, m.p. 128-130°, (Calcd. for $C_{12}H_{15}NO_3$; C, 65. 14; H, 6. 83; N, 6. 33. Found: C, 65. 07; H, 7. 02; N, 6. 32). The structure of V is established unambiguously by the following physical data: $\lambda \frac{95\%\text{EtOH}}{\text{max.}}$ 323 (log e 3. 6), 267 (log e 3. 9) 260 (log e 4. 1) 234 (log e 4. 5) and 229 mm (log e 4. 9); $\lambda \frac{\text{CHCl}_3}{\text{max.}}$ 1685 and 1650 cm⁻¹. The above ultraviolet and infrared absorption peaks are almost exactly analogous

^{*} Prof. E. Leete has privately informed us that in a related autoxidation study he has isolated 3-hydroxy-3-phenyloxindole from 2-benzyl-3phenylindole. We thank Prof. Leete for communicating his results to us prior to publication.

to those of the known o-propionaminopropiophenone? The NMR spectrum shows a singlet (6 protons) at 8.427, a singlet (3 protons) at 7.377, a singlet (1 proton) at 6.457 and a multiplet (4 protons) in the region, 2-37.


We suggest the reaction sequence outlined in Chart I to explain the above results. The tautomer Ia of the hydroperoxide I undergoes rearrangement by an intramolecular enamine displacement to form the dihydroxy indolenine VI. * Addition of a hydroperoxide molecule to VI followed by fragmentation may yield either IV or V. It is also noteworthy that in the oxidation of 2, 3-diethylindole, an intermediate of type VIa could lead directly to the 2-acylindole (tautomerization to the keto form and dehydration of the β -hydroxy dihydroindole). Further experiments to test the above hypothesis are in progress.


Alternatively, VI could arise from the hydroperoxide II, R₁ = R₂ = R₃ = CH₃ as shown below:



REFERENCES

- B. Witkop, J. B. Patrick and M. Rosenblum, J. <u>Am. Chem.</u> <u>Soc.</u>, 73, 2641 (1951).
- E. Leete, <u>ibid.</u>, <u>83</u>, 3645 (1961).
- 3. W. I. Taylor, Proc. Chem. Soc., 247 (1962).

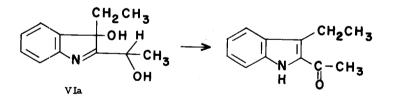


CHART I